Sensors (Sep 2020)

Fabric Defect Detection Based on Illumination Correction and Visual Salient Features

  • Lan Di,
  • Hanbin Long,
  • Jiuzhen Liang

DOI
https://doi.org/10.3390/s20185147
Journal volume & issue
Vol. 20, no. 18
p. 5147

Abstract

Read online

Aiming at the influence of uneven illumination on fabric feature extraction and the limitations of traditional frequency-based visual saliency algorithms, we propose a fabric defect detection method based on the combination of illumination correction and visual salient features—(1) Construct a multi-scale side window box (MS-BOX) filter to extract the illumination component of the image, then use the constructed two-dimensional gamma correction function to perform illumination correction on the image in the global angle, and finally enhance the local contrast of the image in the local angle; (2) Use the L0 gradient minimization method to remove the background texture of fabric images and highlight the defects; (3) Represent the fabric image as a quaternion image, where each pixel in the image is represented by a quaternion consisting of color, intensity and edge characteristics. The two-dimensional fractional Fourier transform (2D-FRFT) is used to obtain the saliency map of the quaternion image. Experiments show that our method has a higher overall recall rate for defect detection of star-patterned, box-patterned, and dot-patterned fabrics, and the overall recall-precision effect is better than other existing methods.

Keywords