PLOS Digital Health (Jul 2022)

A parsimonious model of blood glucose homeostasis

  • Eric Ng,
  • Jaycee M. Kaufman,
  • Lennaert van Veen,
  • Yan Fossat

Journal volume & issue
Vol. 1, no. 7

Abstract

Read online

The mathematical modelling of biological systems has historically followed one of two approaches: comprehensive and minimal. In comprehensive models, the involved biological pathways are modelled independently, then brought together as an ensemble of equations that represents the system being studied, most often in the form of a large system of coupled differential equations. This approach often contains a very large number of tuneable parameters (> 100) where each describes some physical or biochemical subproperty. As a result, such models scale very poorly when assimilation of real world data is needed. Furthermore, condensing model results into simple indicators is challenging, an important difficulty in scenarios where medical diagnosis is required. In this paper, we develop a minimal model of glucose homeostasis with the potential to yield diagnostics for pre-diabetes. We model glucose homeostasis as a closed control system containing a self-feedback mechanism that describes the collective effects of the physiological components involved. The model is analyzed as a planar dynamical system, then tested and verified using data collected with continuous glucose monitors (CGMs) from healthy individuals in four separate studies. We show that, although the model has only a small number (3) of tunable parameters, their distributions are consistent across subjects and studies both for hyperglycemic and for hypoglycemic episodes. Author summary We present a model of glucose homeostasis that consists of an equation of the mass-action-kinetics type for glucose levels and a closed propotional-integral control loop. The control loop models the aggregate effect of all physiological components of homeostasis, such as the production and uptake of insulin and glucagon. We study the model as a smooth, planar, dynamical system and show that its solutions are bounded for parameter values that correspond to healthy individuals. We then fit the model parameters to datasets obtained with continuous glucose monitors in four different studies, and show that they have structured distributions for individuals across a healthy population.