Biosensors (Oct 2021)

Chronic Study on Brainwave Authentication in a Real-Life Setting: An LSTM-Based Bagging Approach

  • Liuyin Yang,
  • Arno Libert,
  • Marc M. Van Hulle

DOI
https://doi.org/10.3390/bios11100404
Journal volume & issue
Vol. 11, no. 10
p. 404

Abstract

Read online

With the advent of the digital age, concern about how to secure authorized access to sensitive data is increasing. Besides traditional authentication methods, there is an interest in biometric traits such as fingerprints, the iris, facial characteristics, and, recently, brainwaves, primarily based on electroencephalography (EEG). Current work on EEG-based authentication focuses on acute recordings in laboratory settings using high-end equipment, typically equipped with 64 channels and operating at a high sampling rate. In this work, we validated the feasibility of EEG-based authentication in a real-world, out-of-laboratory setting using a commercial dry-electrode EEG headset and chronic recordings on a population of 15 healthy people. We used an LSTM-based network with bootstrap aggregating (bagging) to decode our recordings in response to a multitask scheme consisting of performed and imagined motor tasks, and showed that it improved the performance of the standard LSTM approach. We achieved an authentication accuracy, false acceptance rate (FAR), and false rejection rate (FRR) of 92.6%, 2.5%, and 5.0% for the performed motor task; 92.5%, 2.6%, and 4.9% for the imagined motor task; and 93.0%, 1.9%, and 5.1% for the combined tasks, respectively. We recommend the proposed method for time- and data-limited scenarios.

Keywords