Scientific Reports (May 2021)

Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies

  • Conner Ballew,
  • Gregory Roberts,
  • Sarah Camayd-Muñoz,
  • Maximilien F. Debbas,
  • Andrei Faraon

DOI
https://doi.org/10.1038/s41598-021-88785-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multi-functional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, a device based on rotating squares, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6–11.6 GHz) in an anechoic chamber.