Dietary Stevia Residue Extract Supplementation Improves Antioxidant Capacity and Intestinal Microbial Composition of Weaned Piglets
Shuai Liu,
Yunxia Xiong,
Shuting Cao,
Xiaolu Wen,
Hao Xiao,
Yajing Li,
Lei Chi,
Dongsheng He,
Zongyong Jiang,
Li Wang
Affiliations
Shuai Liu
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Yunxia Xiong
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Shuting Cao
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Xiaolu Wen
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Hao Xiao
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Yajing Li
Zhucheng Haotian Pharmaceutical Co., Ltd., Zhucheng 262218, China
Lei Chi
Zhucheng Haotian Pharmaceutical Co., Ltd., Zhucheng 262218, China
Dongsheng He
Zhucheng Haotian Pharmaceutical Co., Ltd., Zhucheng 262218, China
Zongyong Jiang
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Li Wang
State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
This study aimed to investigate the effects of diet supplementation with stevia residue extract (SRE) on growth performance, intestinal health, and antioxidant capacity of weaned piglets. A total of 144 weaned piglets (body weight 6.8 ± 0.5 kg) were randomly selected and allocated into four treatment groups with six replicates of six pigs/pen. The treatments consisted of a basal diet without SRE or basal diet supplemented with 100, 200, or 400 mg/kg SRE. The results showed that the addition of 200 mg/kg SRE to the diet significantly reduced (p p p p < 0.05) the relative abundance of Prevotellaceae (genus) and Roseburia (genus) beneficial bacteria compared to the control group. Spearman’s correlation analysis showed that Prevotella (genus) abundance was positively correlated with liver GSH-PX activity and acetic acid content of colon contents. In conclusion, the supplementation of 400 mg/kg SRE to the diet can improve piglet health by regulating antioxidant reduction homeostasis, which may also be associated with an increase in the relative numbers of potentially beneficial bacteria.