Electronic Journal of Differential Equations (May 1999)
Some properties of Palais-Smale sequences with applications to elliptic boundary-value problems
Abstract
When using calculus of variations to study nonlinear elliptic boundary-value problems on unbounded domains, the Palais-Smale condition is not always satisfied. To overcome this difficulty, we analyze Palais-Smale sequences, and use their convergence to justify the existence of critical points for a functional. We show the existence of positive solutions using a minimax method and comparison arguments for semilinear elliptic equations.