Forests (May 2023)

Genetic Species Identification Using <i>ycf1</i>b, <i>rbcL</i>, and <i>trnH-psbA</i> in the Genus <i>Pinus</i> as a Complementary Method for Anatomical Wood Species Identification

  • Minjun Kim,
  • Tae-Jong Kim

DOI
https://doi.org/10.3390/f14061095
Journal volume & issue
Vol. 14, no. 6
p. 1095

Abstract

Read online

This study proposes the use of genetic analysis as a complementary method for species identification in the genus Pinus, particularly in cases where anatomical identification is challenging. Pinus species were grouped based on anatomical similarities, and the efficacy of using ycf1b, which is the most variable for Pinus species identification, and rbcL, which is a suggested DNA barcode for land plants, was evaluated within each group. Sequences for each species were obtained from the National Center for Biotechnology Information database and were used to perform phylogenetic analysis. Among the species in Group 1 (P. echinata, P. elliottii, P. ponderosa, P. radiata, P. rigida, P. taeda, and P. virginiana), rbcL was only effective in identifying P. radiata and P. ponderosa, while ycf1b classified five species. An additional DNA barcode, trnH-psbA, was needed to identify P. radiata and P. taeda. In Group 2 (P. densiflora, P. sylvestris, and P. thunbergii), most species were identified using both rbcL and ycf1b, with the exception of possible hybrids of P. densiflora and P. sylvestris. In Group 3 (P. koraiensis and P. strobus), two species were identified using rbcL and ycf1b. Combining genetic species identification with anatomical identification can accurately identify species of the genus Pinus.

Keywords