Scientific Reports (Jun 2021)

Early-adolescent antibiotic exposure results in mitochondrial and behavioral deficits in adult male mice

  • Anouk C. Tengeler,
  • Tim L. Emmerzaal,
  • Bram Geenen,
  • Vivienne Verweij,
  • Miranda van Bodegom,
  • Eva Morava,
  • Amanda J. Kiliaan,
  • Tamas Kozicz

DOI
https://doi.org/10.1038/s41598-021-92203-1
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Exposure to antibiotic treatment has been associated with increased vulnerability to various psychiatric disorders. However, a research gap exists in understanding how adolescent antibiotic therapy affects behavior and cognition. Many antibiotics that target bacterial translation may also affect mitochondrial translation resulting in impaired mitochondrial function. The brain is one of the most metabolically active organs, and hence is the most vulnerable to impaired mitochondrial function. We hypothesized that exposure to antibiotics during early adolescence would directly affect brain mitochondrial function, and result in altered behavior and cognition. We administered amoxicillin, chloramphenicol, or gentamicin in the drinking water to young adolescent male wild-type mice. Next, we assayed mitochondrial oxidative phosphorylation complex activities in the cerebral cortex, performed behavioral screening and targeted mass spectrometry-based acylcarnitine profiling in the cerebral cortex. We found that mice exposed to chloramphenicol showed increased repetitive and compulsive-like behavior in the marble burying test, an accurate and sensitive assay of anxiety, concomitant with decreased mitochondrial complex IV activity. Our results suggest that only adolescent chloramphenicol exposure leads to impaired brain mitochondrial complex IV function, and could therefore be a candidate driver event for increased anxiety-like and repetitive, compulsive-like behaviors.