Bovine Serum Albumin Nanoparticles Enhanced the Intranasal Bioavailability of Silybin in Rats
Ana Paula Santos Tartari,
Samila Horst Peczek,
Margani Taise Fin,
Jeferson Ziebarth,
Christiane Schineider Machado,
Rubiana Mara Mainardes
Affiliations
Ana Paula Santos Tartari
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
Samila Horst Peczek
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
Margani Taise Fin
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
Jeferson Ziebarth
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
Christiane Schineider Machado
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
Rubiana Mara Mainardes
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
Silybin (SLB), an important flavonoid from silymarin, displays significant hepatoprotective, anticancer, antioxidant, and neuroprotective effects. However, its therapeutic efficacy is limited by its low solubility and bioavailability. To address these challenges, we engineered bovine serum albumin (BSA) nanoparticles (NP) loaded with SLB (BSA-NP/SLB) using the coacervation method. BSA-SLB NP exhibited a spherical shape, a mean size of 197 nm, a polydispersity index of 0.275, a zeta potential of −34 mV, and an entrapment efficiency of 67%. X-ray diffraction analysis indicated amorphization of SLB upon encapsulation. Formulation stability was upheld over 180 days. In vitro release assays demonstrated controlled diffusion-erosion release, with approximately 40% SLB released within 0.5 h and 100% over 12 h. Intranasal administration of BSA-NP/SLB in rats improved SLB bioavailability by fourfold compared to free SLB. These findings highlight the promising potential of intranasally administered BSA-NP/SLB as an alternative approach to enhance SLB bioavailability, paving the way for innovative therapeutic applications.