Journal of Orthopaedic Translation (Jan 2024)

G protein-coupled receptor 30 activation inhibits ferroptosis and protects chondrocytes against osteoarthritis

  • Zhen Zhao,
  • Shun Niu,
  • Jun Chen,
  • Hongtao Zhang,
  • Lizuo Liang,
  • Kui Xu,
  • Chuan Dong,
  • Chang Su,
  • Tao Yan,
  • Yongqiang Zhang,
  • Hua Long,
  • Le Yang,
  • Minggao Zhao

Journal volume & issue
Vol. 44
pp. 125 – 138

Abstract

Read online

Background: Osteoarthritis (OA) is the most common joint disease worldwide, but its cause remains unclear. Oestrogen protects against OA, but its clinical use is limited. G protein-coupled receptor 30 (GPR30) is a receptor that binds oestrogen, and GPR30 treatment has benefitted patients with some degenerative diseases. However, its effects on OA prevention and treatment remain unclear. Moreover, several studies have found that activation of estrogen receptors exerting anti-ferroptosis effects, which plays an important role in chondrocyte survival. Therefore, this study explored the general and ferroptosis-related effects and mechanisms of GPR30 in OA. Methods: Genome-wide RNA sequencing, western blotting, and immunohistochemistry were used to evaluate GPR30 expression and ferroptosis-related indicators in cartilage tissues from clinical patients. Next, we investigated the effects of G1 (a GPR30 receptor agonist) on the function and pathology of OA in an animal model. We also treated chondrocytes with erastin (ferroptosis agonist) plus G1, G15 (GPR30 receptor antagonist), GPR30 short hairpin RNA, or ferrostatin-1 (ferroptosis inhibitor), then measured cell viability and ferroptosis-related indices and performed proteomics analyses. Finally, western blotting and reverse transcription-polymerase chain reaction were used to assess the effects of G1 on yes-associated protein 1 (YAP1) and ferritin heavy chain 1 (FTH1) expression. Results: GPR30 expression was lower in the OA cartilage tissues than in the normal tissues, and G1 treatment significantly improved the locomotor ability of mice. Moreover, chondrocyte cell viability significantly decreased after erastin treatment, but G1 treatment concentration-dependently mitigated this effect. Furthermore, G1 treatment decreased phosphorylated YAP1 expression, increased activated YAP1 expression, and increased FTH1 transcription and protein expression, protecting against ferroptosis. Conclusion: GPR30 activation inhibited ferroptosis in chondrocytes by suppressing YAP1 phosphorylation, which regulates FTH1 expression.The Translational Potential of this Article: These results provide a novel potential target for therapeutic OA interventions.

Keywords