International Journal of Molecular Sciences (Sep 2020)

Self-Assembly of Supramolecular Architectures by the Effect of Amino Acid Residues of Quaternary Ammonium Pillar[5]arenes

  • Anastasia Nazarova,
  • Dmitriy Shurpik,
  • Pavel Padnya,
  • Timur Mukhametzyanov,
  • Peter Cragg,
  • Ivan Stoikov

DOI
https://doi.org/10.3390/ijms21197206
Journal volume & issue
Vol. 21, no. 19
p. 7206

Abstract

Read online

Novel water-soluble multifunctional pillar[5]arenes containing amide-ammonium-amino acid moiety were synthesized. The compounds demonstrated a superior ability to bind (1S)-(+)-10-camphorsulfonic acid (S-CSA) and methyl orange dye depending on the nature of the substituent, resulting in the formation one-to-one complexes with both guests. The formation of host-guest complexes was confirmed by ultraviolet (UV), circular dichroism (CD) and 1H NMR spectroscopy. This work demonstrates the first case of using S-CSA as a chiral template for the non-covalent self-assembly of architectures based on pillar[5]arenes. It was shown that pillar[5]arenes with glycine or L-alanine fragments formed aggregates with average hydrodynamic diameters (d) of 165 and 238 nm, respectively. It was established that the addition of S-CSA to the L-alanine-containing derivative led to the formation of micron-sized aggregates with d of 713 nm. This study may advance the design novel stereoselective catalysts and transmembrane amino acid channels.

Keywords