Cell Reports (Apr 2020)

Structural Insights into the Mammalian Late-Stage Initiation Complexes

  • Angelita Simonetti,
  • Ewelina Guca,
  • Anthony Bochler,
  • Lauriane Kuhn,
  • Yaser Hashem

Journal volume & issue
Vol. 31, no. 1

Abstract

Read online

Summary: In higher eukaryotes, the mRNA sequence in the direct vicinity of the start codon, called the Kozak sequence (CRCCaugG, where R is a purine), is known to influence the rate of the initiation process. However, the molecular basis underlying its role remains poorly understood. Here, we present the cryoelectron microscopy (cryo-EM) structures of mammalian late-stage 48S initiation complexes (LS48S ICs) in the presence of two different native mRNA sequences, β-globin and histone 4, at overall resolution of 3 and 3.5 Å, respectively. Our high-resolution structures unravel key interactions from the mRNA to eukaryotic initiation factors (eIFs): 1A, 2, 3, 18S rRNA, and several 40S ribosomal proteins. In addition, we are able to study the structural role of ABCE1 in the formation of native 48S ICs. Our results reveal a comprehensive map of ribosome/eIF-mRNA and ribosome/eIF-tRNA interactions and suggest the impact of mRNA sequence on the structure of the LS48S IC. : Simonetti et al. present a high-resolution snapshot of the architecture of mammalian late-stage translation initiation complexes prepared in near native conditions. They provide structural insights into the Kozak sequence interactions of two different archetype mRNA sequences with the ribosome during translation initiation.