SSM: Population Health (Apr 2019)

Biases in self-reported height and weight measurements and their effects on modeling health outcomes

  • Carmen D. Ng

Journal volume & issue
Vol. 7

Abstract

Read online

Self-reported anthropometrics are often used as proxies for measured anthropometrics, but research has shown that heights and weights are often misreported. Using the Study on global AGEing and adult health, I analyze misreporting patterns of height, weight, and BMI in China, India, Russia, and South Africa. Adjustments of self-reported heights and weights using demographic, social, and anthropometric characteristics are evaluated and found to be useful in studying the distribution of anthropometrics within a population. Measured, self-reported, and adjusted BMI are then compared in logistic regression models on the reporting of health outcomes, as well as the resulting accuracy of individual prediction. When BMI is used as a continuous variable in models of health outcomes, measured, self-reported, and adjusted BMI produce similar coefficient estimates, and so self-reported data would be a natural choice because of its accessibility and convenience. In other applications, such as models using categorical BMI and individual prediction using either continuous or categorical BMI, self-reported data in lieu of measured data might not be accurate enough, but adjustments could serve as a potential compromise. Keywords: Anthropometrics, Body mass index, Developing countries, Measurement, Self-report