Metals (Jun 2021)

Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications

  • Jesus Jaquez-Muñoz,
  • Citlalli Gaona-Tiburcio,
  • Alejandro Lira-Martinez,
  • Patricia Zambrano-Robledo,
  • Erick Maldonado-Bandala,
  • Oliver Samaniego-Gamez,
  • Demetrio Nieves-Mendoza,
  • Javier Olguin-Coca,
  • Francisco Estupiñan-Lopez,
  • Facundo Almeraya-Calderon

DOI
https://doi.org/10.3390/met11071002
Journal volume & issue
Vol. 11, no. 7
p. 1002

Abstract

Read online

Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.

Keywords