Energies (Aug 2022)

Feasibility of Thermal Utilization of Primary and Secondary Sludge from a Biological Wastewater Treatment Plant in Kaliningrad City

  • Yuliya Kulikova,
  • Olga Babich,
  • Anna Tsybina,
  • Stanislav Sukhikh,
  • Ivan Mokrushin,
  • Svetlana Noskova,
  • Nikolaj Orlov

DOI
https://doi.org/10.3390/en15155639
Journal volume & issue
Vol. 15, no. 15
p. 5639

Abstract

Read online

Hydrothermal liquefaction (HTL) of sewage sludge is considered in the article as an analogue of the natural processes of oil formation (catagenesis). A comparison of the physicochemical composition of primary and secondary sludge with type II kerogen (natural precursor of oil) showed their similarity. Both types of sludge have a slightly higher level of oxygen and nitrogen. The study tested the hypothesis that the elements included in the inorganic part of the oil source rocks can have a catalytic effect on the oil formation processes. For the conducted studies of sludge HTL, the catalysts containing cations and substances found in oil source rocks were chosen: as homogeneous catalysts (KOH, NaOH, NH4Fe(SO4)2, CoCl6, NiSO4, CuSO4, ZnSO4, MoO3) and as heterogeneous catalysts (MgO, Zeolite, Al2O3). The effectiveness of catalysts containing metal ions, zeolite and aluminum oxide has been proven. The highest biocrude yield was achieved in a process with NiSO4 as the catalyst in a dose 2 g per 10 g of sludge: oil yield increased by 34.9% and 63.4% in the processing of primary and secondary sludge, respectively. The use of catalysts provided an increase in fuel HHV by 10.8–12.5%, which is associated with a decrease in oxygen content (by 10.8–43.2%) with a simultaneous increase in carbon (by 7.9–10.9%) and hydrogen (by 6.5–18.7%) content.

Keywords