eLife (Nov 2022)

Insulin sensitivity is preserved in mice made obese by feeding a high starch diet

  • Amanda E Brandon,
  • Lewin Small,
  • Tuong-Vi Nguyen,
  • Eurwin Suryana,
  • Henry Gong,
  • Christian Yassmin,
  • Sarah E Hancock,
  • Tamara Pulpitel,
  • Sophie Stonehouse,
  • Letisha Prescott,
  • Melkam A Kebede,
  • Belinda Yau,
  • Lake-Ee Quek,
  • Greg M Kowalski,
  • Clinton R Bruce,
  • Nigel Turner,
  • Gregory J Cooney

DOI
https://doi.org/10.7554/eLife.79250
Journal volume & issue
Vol. 11

Abstract

Read online

Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.

Keywords