Diversity (Jan 2020)

Fewer Copepods, Fewer Anchovies, and More Jellyfish: How Does Hypoxia Impact the Chesapeake Bay Zooplankton Community?

  • Wencheng L. Slater,
  • James J. Pierson,
  • Mary Beth Decker,
  • Edward D. Houde,
  • Carlos Lozano,
  • James Seuberling

DOI
https://doi.org/10.3390/d12010035
Journal volume & issue
Vol. 12, no. 1
p. 35

Abstract

Read online

To understand dissolved oxygen deficiency in Chesapeake Bay and its direct impact on zooplankton and planktivorous fish communities, six research cruises were conducted at two sites in the Chesapeake Bay from spring to autumn in 2010 and 2011. Temperature, salinity, and dissolved oxygen were measured from hourly conductivity, temperature, and depth (CTD) casts, and crustacean zooplankton, planktivorous fish and gelatinous zooplankton were collected with nets and trawls. CTD data were grouped into three temperature groups and two dissolved oxygen-level subgroups using principal component analysis (PCA). Species concentrations and copepod nonpredatory mortalities were compared between oxygenated conditions within each temperature group. Under hypoxic conditions, there usually were significantly fewer copepods Acartia tonsa and bay anchovies Anchoa mitchilli, but more bay nettles Chyrsaora chesapeakei and lobate ctenophores Mnemiopsis leidyi. Neutral red staining of copepod samples confirmed that copepod nonpredatory mortalities were higher under hypoxic conditions than under normoxia, indicating that the sudden decline in copepod concentration in summer was directly associated with hypoxia. Because comparisons were made within each temperature group, the effects of temperature were isolated, and hypoxia was clearly shown to have contributed to copepod decreases, planktivorous fish decreases, and gelatinous zooplankton increases. This research quantified the direct effects of hypoxia and explained the interactions between seasonality and hypoxia on the zooplankton population.

Keywords