Applied Sciences (Feb 2019)
A Novel CAD Tool for Electric Educational Diagrams
Abstract
Computer-aided design (CAD) is a technological revolution, very powerful and with large applicability to problem solving. It is essential in many different disciplines ranging from architecture to education, medicine, physics, or gaming. In this work, we propose a novel CAD tool, called CADDi, to assist in the design of electric diagrams in the educational context. We are applying the theory of formal languages to create WDLang, an easy-to-use, highly expressive, unequivocal, and correct programming language for designing electric circuits. This programming language is the cornerstone of CADDi, which automatically generates the equivalent ladder diagram (explains the circuit operation) to the programmed circuit, offering additional features that allow analysis of its functionality in an interactive way. It also offers a graphical interface to directly design ladder diagrams, or to modify the automatically generated ones. The existing electrical CAD tools are either very simple, e.g., for creating good-looking diagrams with no functionality, or too complex, for professional systems design. CADDi is extremely useful for learning purposes. It assists users on how to generate ladder diagrams, and on understanding the behavior of electrical circuits. Additionally, it serves as an assessment tool for self-evaluation in the translation from wiring diagrams to ladder ones. In order to make CADDi highly accessible, it was implemented as a web page.
Keywords