Scientific Reports (Jun 2023)
Conditions for the origin of homochirality in primordial catalytic reaction networks
Abstract
Abstract We study the generation of homochirality in a general chemical model (based on the homogeneous, fully connected Smoluchowski aggregation-fragmentation model) that obeys thermodynamics and can be easily mapped onto known origin of life models (e.g. autocatalytic sets, hypercycles, etc.), with essential aspects of origin of life modeling taken into consideration. Using a combination of theoretical modeling and numerical simulations, we look for minimal conditions for which our general chemical model exhibits spontaneous mirror symmetry breaking. We show that our model spontaneously breaks mirror symmetry in various catalytic configurations that only involve a small number of catalyzed reactions and nothing else. Of particular importance is that mirror symmetry breaking occurs in our model without the need for single-step autocatalytis or mutual inhibition, which may be of relevance for prebiotic chemistry.