PLoS Computational Biology (Jun 2021)

Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth.

  • Colton J Lloyd,
  • Jonathan Monk,
  • Laurence Yang,
  • Ali Ebrahim,
  • Bernhard O Palsson

DOI
https://doi.org/10.1371/journal.pcbi.1007817
Journal volume & issue
Vol. 17, no. 6
p. e1007817

Abstract

Read online

Sustaining a robust metabolic network requires a balanced and fully functioning proteome. In addition to amino acids, many enzymes require cofactors (coenzymes and engrafted prosthetic groups) to function properly. Extensively validated resource allocation models, such as genome-scale models of metabolism and gene expression (ME-models), have the ability to compute an optimal proteome composition underlying a metabolic phenotype, including the provision of all required cofactors. Here we apply the ME-model for Escherichia coli K-12 MG1655 to computationally examine how environmental conditions change the proteome and its accompanying cofactor usage. We found that: (1) The cofactor requirements computed by the ME-model mostly agree with the standard biomass objective function used in models of metabolism alone (M-models); (2) ME-model computations reveal non-intuitive variability in cofactor use under different growth conditions; (3) An analysis of ME-model predicted protein use in aerobic and anaerobic conditions suggests an enrichment in the use of peroxyl scavenging acids in the proteins used to sustain aerobic growth; (4) The ME-model could describe how limitation in key protein components affect the metabolic state of E. coli. Genome-scale models have thus reached a level of sophistication where they reveal intricate properties of functional proteomes and how they support different E. coli lifestyles.