Karpatsʹkì Matematičnì Publìkacìï (Jan 2013)

On approximation of the separately continuous functions $2\pi$-periodical in relation to the second variable

  • H. A. Voloshyn,
  • V. K. Maslyuchenko

DOI
https://doi.org/10.15330/cmp.2.1.4-14
Journal volume & issue
Vol. 2, no. 1
pp. 4 – 14

Abstract

Read online

Using Jackson's and Bernstein's operators we prove that for every topological space $X$ and an arbitrary separately continuous function $f: X \times \mathbb{R}\rightarrow \mathbb{R}$, $2\pi$-periodical in relation to the second variable, there exists such sequence of jointly continuous functions $f_n: X\times \mathbb{R}\rightarrow \mathbb{R}$ such that functions $f_n^x=f_n(x, \cdot): \mathbb{R}\rightarrow \mathbb{R}$ are trigonometric polynomials and $f_n^x\to f^x$ uniformly on $\mathbb{R}$ for every $x\in X$.