Agronomy (Nov 2024)

ABA Affects Distinctive Rice Caryopses Physicochemical Properties on Different Branches

  • Yunfei Wu,
  • Ebenezer Ottopah Ansah,
  • Licheng Zhu,
  • Wenchun Fang,
  • Leilei Wang,
  • Dongping Zhang,
  • Baowei Guo

DOI
https://doi.org/10.3390/agronomy14112632
Journal volume & issue
Vol. 14, no. 11
p. 2632

Abstract

Read online

Abscisic acid (ABA) plays an important regulatory role in the grain filling process, which in turn will affect the final yield and quality of rice. The ABA biosynthesis genes of OsNCED3 and degradation gene OsABA8ox3 affect the ABA content, and then further regulate the ABA signaling. During the development of rice panicle, compared with primary grains (superior grains) growing on primary branches, secondary grains (inferior grains) growing on secondary branches exhibit characteristics. However, little is reported on the physicochemical characteristics of starch between superior and inferior grains in ABA related transgenic lines. In this study, OsNCED3 and OsABA8ox3 transgenic plants were used as materials. The results showed that compared with the WT, the OsNCED3-RNAi lines on grain weight was consistent with the trend of superior and inferior grains, while the OsABA8ox3-RNAi lines affected superior or inferior grains. The total starch and soluble sugar content of grains decreased in both OsNCED3-RNAi and OsABA8ox3-RNAi lines, and the total starch content of superior and inferior grains in OsABA8ox3-RNAi lines decreased. The starch granule size distribution of all samples showed a bimodal and increased proportion of starch grains with large granule size, in which the influence on inferior grains was greater than that of superior grains, which eventually led to a significant increase in their average granule size. The apparent amylose content of inferior grains increased significantly in most lines. The swelling power of the superior grains decreased significantly, while that of the inferior grains increased significantly. Fourier analysis showed that the order degree of starch granule surface decreased in the superior grains of the RNAi line, while it increased in the inferior grains of the OsABA8ox3-RNAi line but decreased in the OsNCED3-RNAi lines. In the superior grains, the relative crystallinity of starch decreased in the OsNCED3-RNAi lines, but remained unchanged or increased in the OsABA8ox3-RNAi line. In inferior grains, the relative crystallinity of starch decreased in the ABA synthesis RNAi line, but increased in the OsABA8ox3-RNAi line. In summary, the influence of ABA on the physicochemical properties of inferior grains is greater than that of superior grains.

Keywords