Eurasian Journal of Soil Science (Jul 2024)

Assessing the impact of biofertilizer on soil microbial dynamics and metabolic activity in a controlled maize pot-grown experiment

  • Katya Dimitrova,
  • Tursynbek Kaiyrbekov,
  • Dobrinka Balabanova

DOI
https://doi.org/10.18393/ejss.1439846
Journal volume & issue
Vol. 13, no. 3
pp. 202 – 209

Abstract

Read online

Biofertilizers, consisting of carefully selected microorganisms across various species and genera, exhibit distinct features that enhance soil fertility and promote plant growth. Embracing the principles of eco-friendly agriculture, the use of biofertilizers emerges as a pivotal strategy for sustainable farming, contributing to environmental preservation and the overall health and biodiversity of the soil. In this study, a commercially available biofertilizer, containing a specialized strain of Priestia megatherium with nitrogen-fixing capabilities, was employed alongside chemical fertilizers at two different doses (30 and 40 mg per kg of soil). The primary objective was to evaluate the impact of biofertilizer on the metabolic activity and structure of microbial communities in a short-term experiment involving potted maize plants, utilizing the BIOLOG® EcoPlates technique. Parameters such as average well-color development (AWCD) and substrate utilization across six guilds (SAWCD) were assessed to gauge microbial metabolic activity. Additionally, functional indexes, including Shannon diversity, Shannon evenness, and Simpson diversity, were calculated as indicators of soil microbial community functionality. While statistically significant differences in AWCD among the studied variants were not observed, all estimated functional indexes consistently revealed heightened microbial diversity and evenness following the application of biofertilizer. This noteworthy finding, achieved within a relatively short period of plant cultivation, underscores the necessity for further research to explore the biofertilizer's enduring effects on soil communities, both in controlled laboratory environments and under real-world field conditions.

Keywords