Modern Supply Chain Research and Applications (Nov 2024)

Integrated optimization of logistics routing problem considering chance preference

  • Liang Ren,
  • Zerong Zhou,
  • Yaping Fu,
  • Ao Liu,
  • Yunfeng Ma

DOI
https://doi.org/10.1108/MSCRA-05-2023-0016
Journal volume & issue
Vol. 6, no. 4
pp. 376 – 392

Abstract

Read online

Purpose – This study aims to examine the impact of the decision makers’ risk preference on logistics routing problem, contributing to logistics behavior analysis and route integration optimization under uncertain environment. Due to the unexpected events and complex environment in modern logistics operations, the logistics process is full of uncertainty. Based on the chance function of satisfying the transportation time and cost requirements, this paper focuses on the fourth party logistics routing integrated optimization problem considering the chance preference of decision makers from the perspective of satisfaction. Design/methodology/approach – This study used the quantitative method to investigate the relationship between route decision making and human behavior. The cumulative prospect theory is used to describe the loss, gain and utility function based on confidence levels. A mathematical model and an improved ant colony algorithm are employed to solve the problems. Numerical examples show the effectiveness of the proposed model and algorithm. Findings – The study’s findings reveal that the dual-population improvement strategy enhances the algorithm’s global search capability and the improved algorithm can solve the risk model quickly, verifying the effectiveness of the improvement method. Moreover, the decision-maker is more sensitive to losses, and the utility obtained when considering decision-makers' risk attitudes is greater than that obtained when the decision-maker exhibits risk neutrality. Practical implications – In an uncertain environment, the logistics decision maker’s risk preference directly affects decision making. Different parameter combinations in the proposed model could be set for decision-makers with different risk attitudes to fit their needs more accurately. This could help managers design effective transportation plans and improve service levels. In addition, the improved algorithm can solve the proposed problem quickly, stably and effectively, so as to help the decision maker to make the logistics path decision quickly according to the required confidence level. Originality/value – Considering the uncertainty in logistics and the risk behavior of decision makers, this paper studies integrated routing problem from the perspective of opportunity preference. Based on the chance function of satisfying the transportation time and cost requirements, a fourth party logistics routing integrated optimization problem model considering the chance preference of decision makers is established. According to the characteristics of the problem, an improved dual-population ant colony algorithm is designed to solve the proposed model. Numerical examples show the effectiveness the proposed methods.

Keywords