Вестник Самарского университета: Аэрокосмическая техника, технологии и машиностроение (Dec 2016)
Using the phenomenon of electrical conduction of flame of non-homogeneous air-fuel mixture in design and development of combustion chamber
Abstract
The use of ionization sensors for the study and diagnosis of the combustion process in gas-turbine power plants is substantiated in the paper. The review of literature data and in-house research show that thermionic emission of electrons from incandescent carbon particles plays a decisive role in the mechanism of ionization of flame sprayed in a stream of liquid hydrocarbon fuels. It is shown that as liquid fuel is injected into the circulation area of a bluff body the area of maximum concentration of electrons that determine the conduction current is located in the circulation area. When liquid fuel is injected in the flame holder the zone of maximum electron density is located in the zone between the recirculation mixing zone and the slipstream. It was found experimentally that the distance between the region of maximum electron density and the stabilizer base is determined by the quantity of the fuel sprayed, the initial temperature, the flow turbulence and the gas flow rate. The results can be used to predict and monitor the characteristics of turbulent flame in combustion chambers of power plants with the help of ionization sensors. They also make it possible to create a system of continuous monitoring and control of ignition and combustion processes ensuring minimum concentration of toxic emissions in the exhaust combustion products.
Keywords