Frontiers in Immunology (May 2022)

A SARS–CoV-2 Spike Receptor Binding Motif Peptide Induces Anti-Spike Antibodies in Mice andIs Recognized by COVID-19 Patients

  • Federico Pratesi,
  • Fosca Errante,
  • Lorenzo Pacini,
  • Irina Charlot Peña-Moreno,
  • Sebastian Quiceno,
  • Alfonso Carotenuto,
  • Saidou Balam,
  • Saidou Balam,
  • Drissa Konaté,
  • Mahamadou M. Diakité,
  • Myriam Arévalo-Herrera,
  • Andrey V. Kajava,
  • Paolo Rovero,
  • Giampietro Corradin,
  • Paola Migliorini,
  • Anna M. Papini,
  • Sócrates Herrera

DOI
https://doi.org/10.3389/fimmu.2022.879946
Journal volume & issue
Vol. 13

Abstract

Read online

The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and -RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.

Keywords