JCI Insight (Oct 2022)

Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury

  • Xili Ding,
  • Qin An,
  • Weikang Zhao,
  • Yang Song,
  • Xiaokai Tang,
  • Jing Wang,
  • Chih-Chiang Chang,
  • Gexin Zhao,
  • Tzung Hsiai,
  • Guoping Fan,
  • Yubo Fan,
  • Song Li

Journal volume & issue
Vol. 7, no. 20

Abstract

Read online

Vascular smooth muscle cells (SMCs) are heterogeneous, and their differential responses to vascular injury are not well understood. To address this question, we performed single-cell analysis of vascular cells to a ligation injury in mouse carotid arteries after 3 days. While endothelial cells had a homogeneous activation of mesenchymal genes, less than 30% of SMCs responded to the injury and generated 2 distinct clusters — i.e., proinflammatory SMCs and stress-responsive SMCs. Proinflammatory SMCs were enriched with high levels of inflammatory markers such as vascular cell adhesion molecule-1 while stress-responsive SMCs overexpressed heat shock proteins. Trajectory analysis suggested that proinflammatory SMCs were potentially derived from a specific subpopulation of SMCs. Ligand-receptor pair analysis showed that the interaction between macrophages and proinflammatory SMCs was the major cell-cell communication among all cell types in the injured arteries. In vitro coculture demonstrated that VCAM1+ SMCs had a stronger chemotactic effect on macrophage recruitment than VCAM1– SMCs. Consistently, the number of VCAM1+ SMCs significantly increased in injured arteries and atherosclerotic lesions of ApoE–/– mice and human arteries. These findings provide insights at the single-cell level on the distinct patterns of endothelial cells and SMC responses to vascular injury.

Keywords