Advances in Human Biology (Jan 2019)

Incidence and mortality of cervix cancer and their relationship with the human development index in 185 countries in the world: An ecology study in 2018

  • Zaher Khazaei,
  • Malihe Sohrabivafa,
  • Kamyar Mansori,
  • Hasan Naemi,
  • Elham Goodarzi

DOI
https://doi.org/10.4103/AIHB.AIHB_15_19
Journal volume & issue
Vol. 9, no. 3
pp. 222 – 227

Abstract

Read online

Introduction: Invasive cervix cancer is one of the most common causes of female genital cancer and accounts for 30% of cancers in developing countries and 5% in developed countries. Economic, social and sexual differences are associated with an increased risk of the cancer in women. Methods: This is a descriptive–analytic study based on incidence and mortality data extracted from the World Cancer Bank. The incidence and mortality rates and cervix uteri cancer distribution maps were drawn for world countries. To analyse data, correlation test and regression tests were used to evaluate the correlation between the incidence and mortality with Human Development Index (HDI). The statistical analysis was carried out by Stata-14, and the significance level was estimated at the level of 0.05. Results: The results showed a significant negative correlation between cervix cancer incidence rate (r = −0.570,P < 0.001) and mortality (r = −0.699,P < 0.001) with the HDI index. Negative and significant correlation was found between the incidence rate with the gross national income (GNI) (r = −0.37,P < 0.0001), Mean years of schooling (MYS) (r = −42,P < 0.0001), Life expectancy at birth (LEB) (r = −0.64,P < 0.0001) and Expected years of schooling (EYS) (r = −0.41,P < 0.0001). There was a significant negative correlation between the mortality rate and GNI (r = −0.42,P < 0.0001), MYS (r = −0.57,P < 0.0001), LEB (r = −0.73,P < 0.0001) and EYS (r = −0.56,P < 0.0001). The linear regression model showed that the increase of HDI (B = 91.8, confidence interval [CI] 95%: [−146.6, −37]) and LEB (B = −0.86, CI 95% [−1.3, −0.3]) decreased and increased MYS (B = 1.31, CI 95% [0.05, 2.5]) and EYS (B = 2.9, CI 95% [1.5.4.4]) significantly increased the incidence of cervix uteri (P < 0.05). Linear regression model showed that the increase of HDI [B = 91.8, CI95%: (-146.6, -37)] and LEB [B = -0.86, CI95% (-1.3, -0.3)] decreased the incidence and increase of MYS [B = 1.31, CI95% (0.05, 2.5)] and EYS [B = 2.9, CI95% (1.5.4.4)] significantly increased the incidence of cervical uteri (P <0.05). And increased HDI [B = 89.3, CI95% (-124.9, -53.8)] and [B = -0.3, CI95% (-0.6, -0.04)] reduced mortality and increased GNI [B = 0.009, CI95% ( 0.001, 0.1)], MYS [B = 0.8, CI95% (1.1.2.9)] and EYS [B = 2.04, CI95% (1.1.4.9)] significantly increased mortality of cervical cancer (P <0.05). Conclusion: Women in moderate to low HDI societies face poor socioeconomic conditions and should be considered as target groups for the prevention of cervix cancer. Moreover, prevention interventions should be focused on this group to ultimately bring about a positive change in the level of morbidity and mortality caused by cervix cancer.

Keywords