GigaByte (Dec 2020)
De novo construction of a transcriptome for the stink bug crop pest Chinavia impicticornis during late development
Abstract
Chinavia impicticornis is a neotropical stink bug of economic importance for various crops. Little is known about the development of the species, or the genetic mechanisms that may favor the establishment of populations in cultivated plants. Here, we conduct the first large-scale molecular study of C. impicticornis. Using tissues derived from the genitalia and the rest of the body for two immature stages of both males and females, we generated RNA-seq data, then assembled and functionally annotated a transcriptome. The de novo-assembled transcriptome contained around 400,000 contigs, with an average length of 688 bp. After pruning duplicated sequences and conducting a functional annotation, the final annotated transcriptome comprised 39,478 transcripts, of which 12,665 were assigned to Gene Ontology (GO) terms. These novel datasets will be invaluable for the discovery of molecular processes related to morphogenesis and immature biology. We hope to contribute to the growing body of research on stink bug evolution and development, as well as to the development of biorational pest management solutions.