Bioactive Materials (Jul 2023)
Early osteoimmunomodulation by mucin hydrogels augments the healing and revascularization of rat critical-size calvarial bone defects
Abstract
The design principle of osteogenic bone grafts has shifted from immunological inertness to limiting foreign body response to combined osteoimmunomodulatory activity to promote high-quality endogenous bone regeneration. Recently developed immunomodulatory mucin hydrogels have been shown to elicit very low complement activation and suppress macrophage release and activation after implantation in vivo. However, their immunoregulatory activity has not yet been studied in the context of tissue repair. Herein, we synthesized mucin-monetite composite materials and investigated their early osteoimmunomodulation using a critical-size rat bone defect model. We demonstrated that the composites can polarize macrophages towards the M2 phenotype at weeks 1 and 2. The early osteoimmunomodulation enhanced early osteogenesis and angiogenesis and ultimately promoted fracture healing and engraftment (revascularization of the host vasculature) at weeks 6 and 12. Overall, we demonstrated the applicability of mucin-based immunomodulatory biomaterials to enhance tissue repair in tissue engineering and regenerative medicine.