Microbiology Spectrum (Jan 2024)
Nanosecond pulsed electric fields increase antibiotic susceptibility in methicillin-resistant Staphylococcus aureus
Abstract
ABSTRACT Staphylococcus aureus is the leading cause of skin and soft-tissue infections (SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. In this study, we measured MRSA inactivation by nanosecond pulsed electric fields (nsPEF), a promising new cell ablation technology. Our results show that treatment with 120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating cellular damage. We anticipated that the perturbation created by nsPEF could increase antibiotic efficacy if nsPEF were applied as a co-treatment. To test this hypothesis, we used three antibiotics approved to treat SSTI, daptomycin, doxycycline, and vancomycin, and compared the cytotoxic effects of these antibiotics administered either before or after nsPEF. Co-treatment with nsPEF and daptomycin greatly potentiated the effects of each monotherapy regardless of their order. Conversely, the sensitivity of MRSA to both doxycycline and vancomycin was increased only when nsPEF preceded the antibiotic incubation. Finally, MRSA cells grown in biofilms were efficiently killed by co-treatment with nsPEF/vancomycin, suggesting that their mutual enhancement is maintained even when treating sessile communities known for their inherent antimicrobial resistance. Altogether our results show that MRSA perturbation by nsPEF potentiates the effect of multiple antibiotics and that the order of the combined treatment can have a major impact on efficacy. Since SSTIs are accessible for physical interventions such as nsPEF stimulus, combinatorial treatments could be used to increase the efficacy of antibiotics used to treat such infections. IMPORTANCE We have found that treatment with short electric pulses potentiates the effects of multiple antibiotics against methicillin-resistant Staphylococcus aureus. By reducing the dose of antibiotic necessary to be effective, co-treatment with electric pulses could amplify the effects of standard antibiotic dosing to treat S. aureus infections such as skin and soft-tissue infections (SSTIs). SSTIs are accessible to physical intervention and are good candidates for electric pulse co-treatment, which could be adopted as a step-in wound and abscess debridement.
Keywords