Symmetry (Dec 2021)
Adaptive Asymptotic Regulation for Uncertain Nonlinear Stochastic Systems with Time-Varying Delays
Abstract
In this paper, for a class of uncertain stochastic nonlinear systems with input time-varying delays, an adaptive neural dynamic surface control (DSC) method is proposed. To approximate the unknown continuous functions online, the neural network approximation technique was applied, and based on the DSC scheme, the desired controller was constructed. A compensation system is presented to compensate for the effect of the input delay. The Lyapunov–Krasovskii functionals (LKFs) were employed to compensate for the effect of the state delay. Compared with the existing works, based on using the DSC scheme with the nonlinear filter and stochastic Barbalat’s lemma, the asymptotic regulation performance of this closed-loop system can be guaranteed under the developed controller. To certify the availability for the designed control method, some simulation results are presented.
Keywords