Archaea (Jan 2012)

Archaeal Phospholipid Biosynthetic Pathway Reconstructed in Escherichia coli

  • Takeru Yokoi,
  • Keisuke Isobe,
  • Tohru Yoshimura,
  • Hisashi Hemmi

DOI
https://doi.org/10.1155/2012/438931
Journal volume & issue
Vol. 2012

Abstract

Read online

A part of the biosynthetic pathway of archaeal membrane lipids, comprised of 4 archaeal enzymes, was reconstructed in the cells of Escherichia coli. The genes of the enzymes were cloned from a mesophilic methanogen, Methanosarcina acetivorans, and the activity of each enzyme was confirmed using recombinant proteins. In vitro radioassay showed that the 4 enzymes are sufficient to synthesize an intermediate of archaeal membrane lipid biosynthesis, that is, 2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate, from precursors that can be produced endogenously in E. coli. Introduction of the 4 genes into E. coli resulted in the production of archaeal-type lipids. Detailed liquid chromatography/electron spray ionization-mass spectrometry analyses showed that they are metabolites from the expected intermediate, that is, 2,3-di-O-geranylgeranyl-sn-glycerol and 2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphoglycerol. The metabolic processes, that is, dephosphorylation and glycerol modification, are likely catalyzed by endogenous enzymes of E. coli.