Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism
Cecilia Tubert,
Irene R.E. Taravini,
Eden Flores-Barrera,
Gonzalo M. Sánchez,
María Alejandra Prost,
María Elena Avale,
Kuei Y. Tseng,
Lorena Rela,
Mario Gustavo Murer
Affiliations
Cecilia Tubert
IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires 1121, Argentina
Irene R.E. Taravini
Neurobiología Experimental, Universidad de Entre Ríos, Gualeguaychú, Entre Ríos E2822EXB, Argentina
Eden Flores-Barrera
Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University, Chicago, IL 60064, USA
Gonzalo M. Sánchez
IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires 1121, Argentina
María Alejandra Prost
IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires 1121, Argentina
María Elena Avale
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires 1428, Argentina
Kuei Y. Tseng
Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University, Chicago, IL 60064, USA
Lorena Rela
IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires 1121, Argentina
Mario Gustavo Murer
IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires 1121, Argentina
The mechanism underlying a hypercholinergic state in Parkinson’s disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels.