Communications Physics (Jan 2025)

Direct measurement of three different deformations near the ground state in an atomic nucleus

  • Adrian Montes Plaza,
  • Janne Pakarinen,
  • Philippos Papadakis,
  • Rolf-Dietmar Herzberg,
  • Rauno Julin,
  • Tomás R. Rodríguez,
  • Andrew D. Briscoe,
  • Andrés Illana,
  • Joonas Ojala,
  • Panu Ruotsalainen,
  • Eetu Uusikylä,
  • Betool Alayed,
  • Ahmed Alharbi,
  • Odette Alonso-Sañudo,
  • Kalle Auranen,
  • Ville Bogdanoff,
  • Jamie Chadderton,
  • Arwin Esmaylzadeh,
  • Christoph Fransen,
  • Tuomas Grahn,
  • Paul T. Greenlees,
  • Jan Jolie,
  • Henna Joukainen,
  • Henri Jutila,
  • Casper-David Lakenbrink,
  • Matti Leino,
  • Jussi Louko,
  • Minna Luoma,
  • Adam McCarter,
  • Bondili Sreenivasa Nara Singh,
  • Panu Rahkila,
  • Andrea Raggio,
  • Jorge Romero,
  • Jan Sarén,
  • Maria-Magdalini Satrazani,
  • Marek Stryjczyk,
  • Conor M. Sullivan,
  • Álvaro Tolosa-Delgado,
  • Juha Uusitalo,
  • Franziskus von Spee,
  • Jessica Warbinek,
  • George L. Zimba

DOI
https://doi.org/10.1038/s42005-024-01928-8
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. 190Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in 190Pb. Contrary to earlier interpretations, we associate the collective yrast band as predominantly oblate, while the non-yrast band with higher collectivity follows characteristics of more deformed, predominantly prolate bands. Direct measurement of the $$E0({0}_{2}^{+}\to {0}_{1}^{+})$$ E 0 ( 0 2 + → 0 1 + ) transition and γ-e − coincidence relations allowed us to locate and firmly assign the $${0}_{2}^{+}$$ 0 2 + state in the level scheme and to discover a spherical $${2}_{3}^{+}$$ 2 3 + state at 1281(1) keV with $$B(E2;{2}_{3}^{+}\to {0}_{1}^{+})=1.2(3)$$ B ( E 2 ; 2 3 + → 0 1 + ) = 1.2 ( 3 ) W.u. These assignments are based purely on observed transition probabilities and monopole strength values, and do not rely on model calculations for their interpretation.