Advances in Mechanical Engineering (Aug 2018)

Feature extraction for fault diagnosis based on wavelet packet decomposition: An application on linear rolling guide

  • Hutian Feng,
  • Rong Chen,
  • Yiwei Wang

DOI
https://doi.org/10.1177/1687814018796367
Journal volume & issue
Vol. 10

Abstract

Read online

Linear rolling guide is increasingly being used as the transmission system in computer numerical control machine tools due to its high stiffness, low friction, good ability of precision retaining, and so on. The lubrication of rolling linear guide affects significantly its performance and hence monitoring the lubrication condition during its operation is of great importance. In this article, the relation between different lubrication conditions of linear rolling guide and their corresponding vibration signals is studied. Three lubrication conditions labeled as “Poor,”“Medium,” and “Good” are simulated to represent the actual working conditions. A data acquisition system is set up to acquire the vibration signals corresponding to different conditions. The wavelet packet decomposition is employed to perform time–frequency analysis of the raw signal, after which the energy distribution of the decomposed signals is extracted as the feature. Two linear rolling guides manufactured by different companies are used in the experiments. The results demonstrate that the relation between the energy distribution extracted from vibration signals and lubrication conditions follows a certain rule. A typical feedforward backpropagation neural network is used as the classifier to verify the effectiveness of energy distribution. The average classification accuracy of the network with energy distribution as input is more than 95%. The results show that the lubrication conditions can be characterized by “energy” hidden in the vibration signals and the energy distribution is an appropriate feature that can be used for fault diagnosis of linear rolling guide.