Symmetry, Integrability and Geometry: Methods and Applications (Dec 2012)

Old and New Reductions of Dispersionless Toda Hierarchy

  • Kanehisa Takasaki

Journal volume & issue
Vol. 8
p. 102

Abstract

Read online

This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is a transcendental function, the logarithm of which resembles the waterbag models of the dispersionless KP hierarchy. They both satisfy a radial version of the Löwner equations. Consistency of these Löwner equations yields a radial version of the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Flat coordinates of the underlying Egorov metrics are presented.

Keywords