Advances in Nonlinear Analysis (Feb 2015)

Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function

  • Goyal Sarika,
  • Sreenadh Konijeti

DOI
https://doi.org/10.1515/anona-2014-0017
Journal volume & issue
Vol. 4, no. 1
pp. 37 – 58

Abstract

Read online

In this article, we study the following p-fractional Laplacian equation: (Pλ)-2∫ℝn|u(y)-u(x)|p-2(u(y)-u(x))|x-y|n+pαdy=λ|u(x)|p-2u(x)+b(x)|u(x)|β-2u(x)inΩ,u=0inℝn∖Ω,u∈Wα,p(ℝn),$ (P_{\lambda }) \quad -2\int _{\mathbb {R}^n}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|x-y|^{n+p\alpha }} dy = \lambda |u(x)|^{p-2} u(x) + b(x)|u(x)|^{\beta -2}u(x) \quad \text{in } \Omega , \quad u = 0 \quad \text{in }\mathbb {R}^n \setminus \Omega ,\, u\in W^{\alpha ,p}(\mathbb {R}^n), $ where Ω is a bounded domain in ℝn with smooth boundary, n > pα, p ≥ 2, α ∈ (0,1), λ > 0 and b : Ω ⊂ ℝn → ℝ is a sign-changing continuous function. We show the existence and multiplicity of non-negative solutions of (Pλ) with respect to the parameter λ, which changes according to whether 1 < β < p or p < β < p* with p* = np(n-pα)-1 respectively. We discuss both cases separately. Non-existence results are also obtained.

Keywords