BMC Pregnancy and Childbirth (Sep 2021)

Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in South Asia and sub-Saharan Africa

  • Sunil Sazawal,
  • Kelli K. Ryckman,
  • Sayan Das,
  • Rasheda Khanam,
  • Imran Nisar,
  • Elizabeth Jasper,
  • Arup Dutta,
  • Sayedur Rahman,
  • Usma Mehmood,
  • Bruce Bedell,
  • Saikat Deb,
  • Nabidul Haque Chowdhury,
  • Amina Barkat,
  • Harshita Mittal,
  • Salahuddin Ahmed,
  • Farah Khalid,
  • Rubhana Raqib,
  • Alexander Manu,
  • Sachiyo Yoshida,
  • Muhammad Ilyas,
  • Ambreen Nizar,
  • Said Mohammed Ali,
  • Abdullah H. Baqui,
  • Fyezah Jehan,
  • Usha Dhingra,
  • Rajiv Bahl

DOI
https://doi.org/10.1186/s12884-021-04067-y
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Babies born early and/or small for gestational age in Low and Middle-income countries (LMICs) contribute substantially to global neonatal and infant mortality. Tracking this metric is critical at a population level for informed policy, advocacy, resources allocation and program evaluation and at an individual level for targeted care. Early prenatal ultrasound examination is not available in these settings, gestational age (GA) is estimated using new-born assessment, last menstrual period (LMP) recalls and birth weight, which are unreliable. Algorithms in developed settings, using metabolic screen data, provided GA estimates within 1–2 weeks of ultrasonography-based GA. We sought to leverage machine learning algorithms to improve accuracy and applicability of this approach to LMICs settings. Methods This study uses data from AMANHI-ACT, a prospective pregnancy cohorts in Asia and Africa where early pregnancy ultrasonography estimated GA and birth weight are available and metabolite screening data in a subset of 1318 new-borns were also available. We utilized this opportunity to develop machine learning (ML) algorithms. Random Forest Regressor was used where data was randomly split into model-building and model-testing dataset. Mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate performance. Bootstrap procedures were used to estimate confidence intervals (CI) for RMSE and MAE. For pre-term birth identification ROC analysis with bootstrap and exact estimation of CI for area under curve (AUC) were performed. Results Overall model estimated GA had MAE of 5.2 days (95% CI 4.6–6.8), which was similar to performance in SGA, MAE 5.3 days (95% CI 4.6–6.2). GA was correctly estimated to within 1 week for 85.21% (95% CI 72.31–94.65). For preterm birth classification, AUC in ROC analysis was 98.1% (95% CI 96.0–99.0; p < 0.001). This model performed better than Iowa regression, AUC Difference 14.4% (95% CI 5–23.7; p = 0.002). Conclusions Machine learning algorithms and models applied to metabolomic gestational age dating offer a ladder of opportunity for providing accurate population-level gestational age estimates in LMICs settings. These findings also point to an opportunity for investigation of region-specific models, more focused feasible analyte models, and broad untargeted metabolome investigation.

Keywords