EPJ Web of Conferences (Jan 2018)

Evaluation of a scattering correction method for high energy tomography

  • Tisseur David,
  • Bhatia Navnina,
  • Estre Nicolas,
  • Berge Léonie,
  • Eck Daniel,
  • Payan Emmanuel

DOI
https://doi.org/10.1051/epjconf/201817006006
Journal volume & issue
Vol. 170
p. 06006

Abstract

Read online

One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where experimental complexities must be avoided. This approach has been previously tested successfully in the energy range of 100 keV – 6 MeV. In this paper, the kernels are simulated using MCNP in order to take into account both photons and electronic processes in scattering radiation contribution. We present scatter correction results on a large object scanned with a 9 MeV linear accelerator.

Keywords