Cancers (Mar 2021)

High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients

  • Manuela Giansanti,
  • Terry Karimi,
  • Isabella Faraoni,
  • Grazia Graziani

DOI
https://doi.org/10.3390/cancers13061428
Journal volume & issue
Vol. 13, no. 6
p. 1428

Abstract

Read online

High-dose vitamin C has been proposed as a potential therapeutic approach for patients with advanced tumors who failed previous treatment with chemotherapy. Due to vitamin C complex pharmacokinetics, only intravenous administration allows reaching sufficiently high plasma concentrations required for most of the antitumor effects observed in preclinical studies (>0.250 mM). Moreover, vitamin C entry into cells is tightly regulated by SVCT and GLUT transporters, and is cell type-dependent. Importantly, besides its well-recognized pro-oxidant effects, vitamin C modulates TET enzymes promoting DNA demethylation and acts as cofactor of HIF hydroxylases, whose activity is required for HIF-1α proteasomal degradation. Furthermore, at pharmacological concentrations lower than those required for its pro-oxidant activity (<1 mM), vitamin C in specific genetic contexts may alter the DNA damage response by increasing 5-hydroxymethylcytosine levels. These more recently described vitamin C mechanisms offer new treatment opportunities for tumors with specific molecular defects (e.g., HIF-1α over-expression or TET2, IDH1/2, and WT1 alterations). Moreover, vitamin C action at DNA levels may provide the rationale basis for combination therapies with PARP inhibitors and hypomethylating agents. This review outlines the pharmacokinetic and pharmacodynamic properties of vitamin C to be taken into account in designing clinical studies that evaluate its potential use as anticancer agent.

Keywords