Microbiology Spectrum (Jun 2022)
Rapid Identification of Bacillus anthracis In Silico and On-Site Using Novel Single-Nucleotide Polymorphisms
Abstract
ABSTRACT Bacillus anthracis is a spore-forming bacterium that causes life-threatening infections in animals and humans and has been used as a bioterror agent. Rapid and reliable detection and identification of B. anthracis are of primary interest for both medical and biological threat-surveillance purposes. Few chromosomal sequences provide enough polymorphisms to clearly distinguish B. anthracis from closely related species. We analyzed 18 loci of the chromosome of B. anthracis and discovered eight novel single-nucleotide polymorphism (SNP) sites that can be used for the specific identification of B. anthracis. Using these SNP sites, we developed software—named AGILE V1.1 (anthracis genome-based identification with high-fidelity E-probe)—for easy, user-friendly identification of B. anthracis from whole-genome sequences. We also developed a recombinase polymerase amplification-Cas12a-based method that uses nucleic acid extracts for the specific, rapid, in-the-field identification of B. anthracis based on these SNPs. Via this method and B. anthracis-specific CRISPR RNAs for the target CR5_2, CR5_1, and Ba813 SNPs, we clearly detected 5 aM genomic DNA. This study provides two simple and reliable methods suitable for use in local hospitals and public health programs for the detection of B. anthracis. IMPORTANCE Bacillus anthracis is the etiologic agent of anthrax, a fatal disease and a potential biothreat. A specific, accurate, and rapid method is urgently required for the identification of B. anthracis. We demonstrate the potential of using eight novel SNPs for the rapid and accurate detection of B. anthracis via in silico and laboratory-based testing methods. Our findings have important implications for public health responses to disease outbreaks and bioterrorism threats.
Keywords