Drones (Jul 2024)
DLSW-YOLOv8n: A Novel Small Maritime Search and Rescue Object Detection Framework for UAV Images with Deformable Large Kernel Net
Abstract
Unmanned aerial vehicle maritime search and rescue target detection is susceptible to external factors, which can seriously reduce detection accuracy. To address these challenges, the DLSW-YOLOv8n algorithm is proposed combining Deformable Large Kernel Net (DL-Net), SPD-Conv, and WIOU. Firstly, to refine the contextual understanding ability of the model, the DL-Net is integrated into the C2f module of the backbone network. Secondly, to enhance the small target characterization representation, a spatial-depth layer is used instead of pooling in the convolution module, and an additional detection head is integrated into the low-level feature map. The loss function is improved to enhance small target localization performance. Finally, a UAV maritime target detection dataset is employed to demonstrate the effectiveness of the proposed algorithm, whose results show that DLSW-YOLOv8n achieves a detection accuracy of 79.5%, which represents an improvement of 13.1% compared to YOLOv8n.
Keywords