Ophthalmology Science (Jun 2023)

Acoustic Micro-Tapping Optical Coherence Elastography to Quantify Corneal Collagen Cross-Linking

  • Mitchell A. Kirby, PhD,
  • Ivan Pelivanov, PhD,
  • Gabriel Regnault, PhD,
  • John J. Pitre, PhD,
  • Ryan T. Wallace, PhD,
  • Matthew O’Donnell, PhD,
  • Ruikang K. Wang, PhD,
  • Tueng T. Shen, PhD, MD

Journal volume & issue
Vol. 3, no. 2
p. 100257

Abstract

Read online

Purpose: To evaluate changes in the anisotropic elastic properties of ex vivo human cornea treated with ultraviolet cross-linking (CXL) using noncontact acoustic micro-tapping optical coherence elastography (AμT-OCE). Design: Acoustic micro-tapping OCE was performed on normal and CXL human donor cornea in an ex vivo laboratory study. Subjects: Normal human donor cornea (n = 22) divided into 4 subgroups. All samples were stored in optisol. Methods: Elastic properties (in-plane Young’s, E, and out-of-plane, G, shear modulus) of normal and ultraviolet CXL–treated human corneas were quantified using noncontact AμT-OCE. A nearly incompressible transverse isotropic model was used to reconstruct moduli from AμT-OCE data. Independently, cornea elastic moduli were also measured with destructive mechanical tests (tensile extensometry and shear rheometry). Main Outcome Measures: Corneal elastic moduli (in-plane Young’s modulus, E, in-plane, μ, and out-of-plane, G, shear moduli) can be evaluated in both normal and CXL treated tissues, as well as monitored during the CXL procedure using noncontact AμT-OCE. Results: Cross-linking induced a significant increase in both in-plane and out-of-plane elastic moduli in human cornea. The statistical mean in the paired study (presurgery and postsurgery, n = 7) of the in-plane Young’s modulus, E=3μ, increased from 19 MPa to 43 MPa, while the out-of-plane shear modulus, G, increased from 188 kPa to 673 kPa. Mechanical tests in a separate subgroup support CXL-induced cornea moduli changes and generally agree with noncontact AμT-OCE measurements. Conclusions: The human cornea is a highly anisotropic material where in-plane mechanical properties are very different from those out-of-plane. Noncontact AμT-OCE can measure changes in the anisotropic elastic properties in human cornea as a result of ultraviolet CXL. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references.

Keywords