Rich dynamics and functional organization on topographically designed neuronal networks in vitro
Marc Montalà-Flaquer,
Clara F. López-León,
Daniel Tornero,
Akke Mats Houben,
Tanguy Fardet,
Pascal Monceau,
Samuel Bottani,
Jordi Soriano
Affiliations
Marc Montalà-Flaquer
Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
Clara F. López-León
Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
Daniel Tornero
Laboratory of Neural Stem Cells and Brain Damage, Institute of Neurosciences, University of Barcelona, E-08036 Barcelona, Spain
Akke Mats Houben
Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
Tanguy Fardet
Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France; University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Pascal Monceau
Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France
Samuel Bottani
Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France
Jordi Soriano
Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain; Corresponding author
Summary: Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys. We followed the evolution of spontaneous activity in these cultures along 20 days in vitro using fluorescence calcium imaging. The networks were characterized by rich spatiotemporal activity patterns that comprised from small regions of the culture to its whole extent. Effective connectivity analysis revealed the emergence of spatially compact functional modules that were associated with both the underpinned topographical features and predominant spatiotemporal activity fronts. Our results show the capacity of spatial constraints to mold activity and functional organization, bringing new opportunities to comprehend the structure-function relationship in living neuronal circuits.