Remote Sensing (Oct 2022)

Statistical Study of the Ionospheric Slab Thickness at Yakutsk High-Latitude Station

  • Jian Feng,
  • Yuqiang Zhang,
  • Na Xu,
  • Bo Chen,
  • Tong Xu,
  • Zhensen Wu,
  • Zhongxin Deng,
  • Yi Liu,
  • Zhuangkai Wang,
  • Yufeng Zhou,
  • Chen Zhou,
  • Zhengyu Zhao

DOI
https://doi.org/10.3390/rs14215309
Journal volume & issue
Vol. 14, no. 21
p. 5309

Abstract

Read online

The ionospheric equivalent slab thickness (EST, also named τ) is defined as the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), and it is a significant parameter representative of the ionosphere. This paper presents a comprehensive statistical study of the ionospheric slab thickness at Yakutsk, located at the high latitude of East Asia, using the GPS-TEC and ionosonde NmF2 data for the years 2010–2017. The results show that the τ has different diurnal and seasonal variations in high- and low-solar-activity years, and the τ is greatest in the winter, followed by the equinox, and it is smallest in the summer in both high- and low-solar-activity years, except during the noontime of low-solar-activity years. Specifically, the τ in inter of high-solar-activity year shows an approximate single peak pattern with the peak around noon, while it displays a double-peak pattern with the pre-sunrise and sunset peaks in winter of the low-solar-activity years. Moreover, the τ in the summer and equinox have smaller diurnal variations, and there are peaks with different magnitudes during the sunrise and post-sunset periods. The mainly diurnal variation of τ in different seasons of high- and low-solar-activity years can be explained within the framework of relative variation of TEC and NmF2 during the corresponding period. By defining the disturbance index (DI), which can visually assess the relationship between instantaneous values and the median, we found that the geomagnetic storm would enhance the τ at Yakutsk. An example on 7 June 2013 is also presented to analyze the physical mechanism. It should be due to the intense particle precipitation and expanded plasma convection electric field during the storm at high-latitude Yakutsk station. The results would improve the current understanding of climatological and storm-time behavior of τ at high latitudes in East Asia.

Keywords