Water (Apr 2019)

Flow Division Dynamics in the Mekong Delta: Application of a 1D-2D Coupled Model

  • Sepehr Eslami,
  • Piet Hoekstra,
  • Herman Kernkamp,
  • Nam Nguyen Trung,
  • Dung Do Duc,
  • Tho Tran Quang,
  • Mochamad Februarianto,
  • Arthur Van Dam,
  • Maarten van der Vegt

DOI
https://doi.org/10.3390/w11040837
Journal volume & issue
Vol. 11, no. 4
p. 837

Abstract

Read online

The Mekong Delta constitutes a complicated multi-channel estuarine system, exchanging water with a delta-wide irrigation system. A 1D–2DH coupled numerical domain is calibrated and validated for water level and discharge during the dry season. This approach benefits from the simplicity of a 1D network within the estuarine and irrigation systems, while maintaining the interaction with the spatial tidal dynamics of the 2DH coastal domain. First, the role of the irrigation system on tidal dynamics is quantified; then, tidal propagation, freshwater budget, and the effect of offshore subtidal water level on discharge division are investigated. The results show that the complex irrigation system, in a friction-like manner, reduces the tidal amplitude up to 25%. The channels aggregate to 1% of the total water volume in the delta, while accommodating up to 10% of the tidal prism. Tidal amplitude reduces upstream, while subtidal water level is highly sensitive to upstream discharge, spring–neap cycles, and wind-generated offshore surge. Although cumulative discharge division within the estuarine network is consistent, temporal discharge division can be significantly sensitive to offshore wind-surge. During the dry season, it can reverse the expected subtidal discharge division within the time-scale of a few days and potentially influence salt intrusion.

Keywords