Journal of Dental Sciences (Apr 2023)

The effect of surface material, roughness and wettability on the adhesion and proliferation of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis☆

  • Sunyoung Choi,
  • Ye-Hyeon Jo,
  • In-Sung Luke Yeo,
  • Hyung-In Yoon,
  • Jae-Hyun Lee,
  • Jung-Suk Han

Journal volume & issue
Vol. 18, no. 2
pp. 517 – 525

Abstract

Read online

Background/purpose: Dental implants are inevitably exposed to bacteria in oral cavity. Understanding the colonization of bacteria on implant surface is necessary to prevent bacteria-related inflammation surrounding dental implants. The purpose of this study was to investigate the effect of surface properties on biofilm formation on the implant surface. Materials and methods: One early colonizer, Streptococcus gordonii (S. gordonii), and two late colonizers, Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis), were grown on the titanium and zirconia surfaces with two types of surface roughness for 24 and 72 h. Each bacterial biofilm on specimens was quantified using crystal violet assay and observed by scanning electron microscopy. Results: S. gordonii formed more biofilm on the titanium surface than zirconia at the same roughness and more biofilm on the rough surface than smooth one of the same materials at 24 and 72 h of incubation. F. nucleatum adhered on all the surfaces at 24 h and proliferated actively on the surfaces except smooth zirconia at 72 h. P. gingivalis proliferated vigorously on the surfaces at 72 h while it scarcely adhered at 24 h. There was no consistent correlation between contact angle and biofilm formation of the three bacteria. Conclusion: The three bacteria proliferated most on the rough titanium surface and least on the smooth zirconia surface. In addition, the proliferation was affected by the bacterial species as well as the surface properties.

Keywords