EcoMat (Mar 2023)

Doping engineering of scandium‐based solid‐state electrolytes toward superior ionic conductivity

  • Hongtu Zhang,
  • Zhichao Zeng,
  • Xiaomeng Shi,
  • Chun‐Hai Wang,
  • Yaping Du

DOI
https://doi.org/10.1002/eom2.12315
Journal volume & issue
Vol. 5, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract One key research point of solid‐state electrolytes (SSEs) is ionic conductivity. To date, their ionic conductivity is relatively low to meet the requirements of practical applications; thus, more investigations on the migration mechanisms are needed. Here, we constructed scandium‐based halide SSEs (Li3‐xSc1‐x(Zr/Hf)xCl6, x = 0 ~ 0.5). The highest ionic conductivities (1.61 and 1.33 mS/cm) and the lowest activation energies (0.326 and 0.323 eV) are shown in Li2.6Sc0.6Zr0.4Cl6 (LSZC~0.4) and Li2.6Sc0.6Hf0.4Cl6 (LSHC~0.4), respectively. Their electrochemical windows in the cells of Li/Li7P3S11/LSZC~0.4/LSZC~0.4‐C and Li/Li7P3S11/LSHC~0.4/LSHC~0.4‐C are 1.3 ~ 4.2 V and 1.6 ~ 4.1 V versus Li+/Li, respectively. The crystal structures and the Li+ chemical environments were investigated by X‐ray diffraction and 7Li solid‐state magic angle spinning nuclear magnetic resonance, indicating weaker bond strengths of LiCl to facilitate the transportation of Li+. The potential reason explaining the increased ionic conductivity was determined based on the bond valence site energy theory.

Keywords