Frontiers in Endocrinology (Nov 2023)

Using feature optimization and LightGBM algorithm to predict the clinical pregnancy outcomes after in vitro fertilization

  • Lu Li,
  • Lu Li,
  • Xiangrong Cui,
  • Jian Yang,
  • Xueqing Wu,
  • Gang Zhao,
  • Gang Zhao

DOI
https://doi.org/10.3389/fendo.2023.1305473
Journal volume & issue
Vol. 14

Abstract

Read online

BackgroundAccording to a recent report by the WHO, approximately 17.5\% (about one-sixth) of the global adult population is affected by infertility. Consequently, researchers worldwide have proposed various machine learning models to improve the prediction of clinical pregnancy outcomes during IVF cycles. The objective of this study is to develop a machine learning(ML) model that predicts the outcomes of pregnancies following in vitro fertilization (IVF) and assists in clinical treatment.MethodsThis study conducted a retrospective analysis on provincial reproductive centers in China from March 2020 to March 2021, utilizing 13 selected features. The algorithms used included XGBoost, LightGBM, KNN, Naïve Bayes, Random Forest, and Decision Tree. The results were evaluated using performance metrics such as precision, recall, F1-score, accuracy and AUC, employing five-fold cross-validation repeated five times.ResultsAmong the models, LightGBM achieved the best performance, with an accuracy of 92.31%, recall of 87.80%, F1-score of 90.00\%, and an AUC of 90.41%. The model identified the estrogen concentration at the HCG injection(etwo), endometrium thickness (mm) on HCG day(EM TNK), years of infertility(Years), and body mass index(BMI) as the most important features.ConclusionThis study successfully demonstrates the LightGBM model has the best predictive effect on pregnancy outcomes during IVF cycles. Additionally, etwo was found to be the most significant predictor for successful IVF compared to other variables. This machine learning approach has the potential to assist fertility specialists in providing counseling and adjusting treatment strategies for patients.

Keywords